A “regular” Pentagonal Tiling of the Plane

نویسندگان

  • PHILIP L. BOWERS
  • KENNETH STEPHENSON
چکیده

The paper introduces conformal tilings, wherein tiles have specified conformal shapes. The principal example involves conformally regular pentagons which tile the plane in a pattern generated by a subdivision rule. Combinatorial symmetries imply rigid conformal symmetries, which in turn illustrate a new type of tiling self-similarity. In parallel with the conformal tilings, the paper develops discrete tilings based on circle packings. These faithfully reflect the key features of the theory and provide the tiling illustrations of the paper. Moreover, it is shown that under refinement the discrete tiles converge to their true conformal shapes, shapes for which no other approximation techniques are known. The paper concludes with some further examples which may contribute to the study of tilings and shinglings being carried forward by Cannon, Floyd, and Parry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal Tilings Ii: Local Isomorphism, Hierarchy, and Conformal Type

This is the second in a series of papers on conformal tilings. The overriding themes of this paper are local isomorphisms, hierarchical structures, and the type problem in the context of conformally regular tilings, a class of tilings introduced first by the authors in 1997 with an example of a conformally regular pentagonal tiling of the plane [2]. We prove that when a conformal tiling has a c...

متن کامل

Systematic Study of Convex Pentagonal Tilings, II: Tilings by Convex Pentagons with Four Equal-length Edges

We derived 14 types of tiling cases under a restricted condition in our previous report, which studied plane tilings with congruent convex pentagons. That condition is referred to as the category of the simplest set of node (vertex of edge-to-edge tiling) conditions when the tile is a convex pentagon with four equal-length edges. This paper shows the detailed properties of convex pentagonal til...

متن کامل

Tiling the Hyperbolic Plane with a Single Pentagonal Tile

In this paper, we study the number of tilings of the hyperbolic plane that can be constructed, starting from a single pentagonal tile, the only permitted transformations on the basic tile being the replication by displacement along the lines of the pentagrid. We obtain that there is no such tiling with five colours, that there are exactly two of them with four colours and a single trivial tilin...

متن کامل

Convex Pentagons for Edge-to-Edge Tiling, III

We introduce a plan toward a perfect list of convex pentagons that can tile the whole plane in edge-to-edge manner. Our strategy is based on Bagina’s Proposition, and is direct and primitive: Generating all candidates of pentagonal tiles (several hundreds in number), classify them into the known 14 types, geometrically impossible cases, the cases that do not generate an edge-to-edge pentagonal ...

متن کامل

Properties of Nodes in Pentagonal Tilings

A node of valence k in an edge-to-edge tiling is a point that is the common vertex of k tiles. We show that an edge-to-edge tiling of plane by pentagons each of which has m nodes of valence 3 and 5 − m nodes of valence k has properties of (m, k) = (3, 4) or (m, k) = (4, 6) if it is normal. Then we discuss tilings by congruent convex pentagons using the properties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997